Running conversion optimization experiments the right way with Chad Sanderson

Learn how to run conversion optimization experiments the right way. In this video, I sit down with Chad Sanderson, Program Manager on the Microsoft Experimentation Platform team, to discuss statistical testing, calculating sample size, and selecting the right tools to help you run statistically significant conversion optimization tests. Subscribe to our YouTube Channel  

The post Running conversion optimization experiments the right way with Chad Sanderson appeared first on CXL.

Learn how to run conversion optimization experiments the right way. In this video, I sit down with Chad Sanderson, Program Manager on the Microsoft Experimentation Platform team, to discuss statistical testing, calculating sample size, and selecting the right tools to help you run statistically significant conversion optimization tests.

[This post contains video, click to play]

Subscribe to our YouTube Channel

 

The post Running conversion optimization experiments the right way with Chad Sanderson appeared first on CXL.

Online glossary of A/B testing terms and abbreviations

We are happy to present a brand new addition to our website: a comprehensive A/B testing glossary containing terms and abbreviations used testing as part of conversion rate optimization (CRO).  Definitions start from very basic things such as “A/…

We are happy to present a brand new addition to our website: a comprehensive A/B testing glossary containing terms and abbreviations used testing as part of conversion rate optimization (CRO).  Definitions start from very basic things such as “A/B test“, “mean“, “conversion rate” and “revenue per user“, go through “hypothesis“, “null hypothesis“, “standard deviation“, “p-value” […] Read More...

The A/B Testing Guide to Surviving on a Deserted Island

The secluded and isolated deserted island setting has been used as the stage for many hypothetical explanations in economics and philosophy with the scarcity of things that can be developed as resources being a central feature. Scarcity and the need to…

The secluded and isolated deserted island setting has been used as the stage for many hypothetical explanations in economics and philosophy with the scarcity of things that can be developed as resources being a central feature. Scarcity and the need to keep risk low while aiming to improve one’s situation is what make it a […] Read More...

Designing successful A/B tests in Email Marketing

The process of A/B testing (a.k.a. online controlled experiments) is well-established in conversion rate optimization for all kinds of online properties and is widely used by e-commerce websites. On this blog I have already written in depth about the s…

The process of A/B testing (a.k.a. online controlled experiments) is well-established in conversion rate optimization for all kinds of online properties and is widely used by e-commerce websites. On this blog I have already written in depth about the statistics involved as well as the ROI calculations in terms of balancing risk and reward for […] Read More...

Confidence Intervals & P-values for Percent Change / Relative Difference

In many controlled experiments, including online controlled experiments (a.k.a. A/B tests) the result of interest and hence the inference made is about the relative difference between the control and treatment group. In A/B testing as part of conversio…

In many controlled experiments, including online controlled experiments (a.k.a. A/B tests) the result of interest and hence the inference made is about the relative difference between the control and treatment group. In A/B testing as part of conversion rate optimization and in marketing experiments in general we use the term “percent lift” (“percentage lift”) while in […] Read More...

The Google Optimize Statistical Engine and Approach

Google Optimize is the latest attempt from Google to deliver an A/B testing product. Previously we had “Google Website Optimizer”, then we had “Content Experiments” within Google Analytics, and now we have the latest iteration: …

Google Optimize is the latest attempt from Google to deliver an A/B testing product. Previously we had “Google Website Optimizer”, then we had “Content Experiments” within Google Analytics, and now we have the latest iteration: Google Optimize. While working on the integration of our A/B Testing Calculator with Google Optimize I was curious to see […] Read More...

20-80% Faster A/B Tests? Is it real?

I got a question today about our AGILE A/B testing calculator and the statistics behind it and realized that I’m yet to write a dedicated post explaining the efficiency gains from using the method in more detail. This despite the fact that these …

I got a question today about our AGILE A/B testing calculator and the statistics behind it and realized that I’m yet to write a dedicated post explaining the efficiency gains from using the method in more detail. This despite the fact that these speed gains are clearly communicated and verified through simulation results presented in our AGILE […] Read More...

Risk vs. Reward in A/B Tests: A/B testing as Risk Management

What is the goal of A/B testing? How long should I run a test for? Is it better to run many quick tests, or one long one? How do I know when is a good time to stop testing? How do I choose the significance threshold for a test? Is there something speci…

What is the goal of A/B testing? How long should I run a test for? Is it better to run many quick tests, or one long one? How do I know when is a good time to stop testing? How do I choose the significance threshold for a test? Is there something special about 95%? […] Read More...

Statistical Significance for Non-Binomial Metrics – Revenue per User, AOV, etc.

In this article I cover the method required to calculate statistical significance for non-binomial metrics such as average revenue per user, average order value, average sessions per user, average session duration, average pages per session, and others…

In this article I cover the method required to calculate statistical significance for non-binomial metrics such as average revenue per user, average order value, average sessions per user, average session duration, average pages per session, and others. The focus is on A/B testing in the context of conversion rate optimization, landing page optimization and e-mail […] Read More...

One-tailed vs Two-tailed Tests of Significance in A/B Testing

The question of whether one should run A/B tests (a.k.a online controlled experiments) using one-tailed versus two-tailed tests of significance was something I didn’t even consider important, as I thought the answer (one-tailed) was so self-evide…

The question of whether one should run A/B tests (a.k.a online controlled experiments) using one-tailed versus two-tailed tests of significance was something I didn’t even consider important, as I thought the answer (one-tailed) was so self-evident that no discussion was necessary. However, while preparing for my course on “Statistics in A/B Testing” for the ConversionXL […] Read More...